
Comosum: An Extensible, Reconfigurable, and Fault-Tolerant IoT Platform for
Digital Agriculture

Gloire Rubambiza
Cornell University

gloire@cs.cornell.edu

Shiang-Wan Chin
Cornell University

sc2983@cornell.edu

Mueed Rehman
Cornell University

mr2265@cornell.edu

Sachille Atapattu
Cornell University

sa2257@cornell.edu

José F. Martínez
Cornell University

martinez@cornell.edu

Hakim Weatherspoon
Cornell University

hweather@cs.cornell.edu

Abstract
This work is an experience with a deployed networked system
for digital agriculture (or DA). DA is the use of data-driven
techniques toward a sustainable increase in farm productivity
and efficiency. DA systems are expected to be overlaid on ex-
isting rural infrastructures, which are known to be less robust
than urban infrastructures. While existing DA approaches
partially address several infrastructure issues, challenges re-
lated to data aggregation, data analytics, and fault tolerance
remain open. In this work, we present the design of Comosum,
an extensible, reconfigurable, and fault-tolerant architecture
of hardware, software, and distributed cloud abstractions to
sense, analyze, and actuate on different farm types. We also
present FarmBIOS, an implementation of the Comosum ar-
chitecture. We analyze FarmBIOS by leveraging various ap-
plications, deployment experiences, and network differences
between urban and rural farms. This includes, for instance, an
edge analytics application achieving 86% accuracy in vine-
yard disease detection. An eighteen-month deployment of
FarmBIOS highlights Comosum’s tolerance to intermittent
network outages that lasted for several days during many pe-
riods of the deployment. We offer practical insights on how
FarmBIOS adapts to new DA vendors, reconfigurability chal-
lenges in the cloud, persistent failures that are unique to the
DA context, and the system’s current limitations.

1 Introduction

Digital agriculture (DA) is the use of data-driven techniques
towards a “sustainable intensification” [65] in farm productiv-
ity and efficiency. DA is the next generation stemming from
precision agriculture, which is local, offline, precise applica-
tion of farm inputs (e.g., water, fertilizer, etc.) [44, 57, 58]. In
contrast, DA systems involve more complex data processing
and communication, both on and off rural farms [79]. DA sys-
tems are expected to be overlaid on existing rural infrastruc-
tures. However, rural infrastructures (e.g., Internet, power) are
known to be less robust than urban infrastructure [17]. This is

due, in part, to sparse populations [41], urban-centered tech-
nology design and standards [17], frequent outages [42], and
limited maintenance [27]. These challenges make networked
data aggregation and analytics on rural farms difficult [88].

While state-of-the-art approaches address several of these
DA issues [26, 38, 85, 88], a lot of challenges related to
data aggregation, data analytics, and fault tolerance remain
open. First, although the diversity of sensor providers is grow-
ing [4, 5, 80, 83, 84, 87], data aggregation is difficult because
of distributed data sources, incompatible sensors and data
formats, and software dependencies. Second, the set of data
analysis methods are increasingly leveraging advanced tech-
niques such as machine-learning (ML) [45, 53, 68]; however,
existing data analysis platforms rarely account for the vari-
ety of sensing mechanisms and crop types (e.g., row crop
vs specialty farms). Third, state-of-the-art platforms [78, 88]
partially address rural Internet and power challenges. How-
ever, fault tolerance is difficult to achieve across heteroge-
neous devices, networks, and cloud services. Overcoming
these challenges requires extensibility, reconfigurability, and
fault tolerance in the (1) underlying sensors and networking,
(2) overlaying software, and (3) supporting cloud services.

In this paper, we present Comosum,1 a cloud-based hard-
ware/software architecture that takes a significant step to-
ward this goal. Comosum is designed for researchers inte-
grating heterogeneous DA platforms. To address the hetero-
geneity, Comosum relies on prior strong systems concepts
such as separation of devices and device drivers [73], mod-
ularity [28, 43, 61], and reconfigurability of closed-source
software/hardware [18]. Our general approach to DA-enabled
farms is modular with abstractions for hardware (i.e., sensors
and networking devices), software, and the distributed cloud
(i.e., a cloud that combines the edge cloud at the farm, the
public cloud, and sensor vendor clouds).

Specifically, the Comosum design presents three principles:

• Extensible modules: Comosum modules (§§ 3.2) pro-

1Named after Chlorophytum comosum, also known as spider plants, for
their extensible leaves and adaptability to many conditions [67].

vide an abstraction on the acts of sensing, storing, com-
puting, and actuating farm data. This abstraction is de-
rived from the object-oriented programming idea of in-
heritable instances, which can be customized for dif-
ferent DA applications. Note that these modules are
oblivious to the underlying hardware. This design con-
sideration follows from the principle of dumb switches
and smart control planes in Software-Defined Network-
ing (SDN) [18]. In this manner, given a uniform API,
the hardware (i.e., sensing and networking devices) and
software modules can evolve independently.

• Fault-tolerant distributed cloud: The Comosum dis-
tributed cloud (§§ 3.3) addresses challenges in support-
ing elastic, vendor-neutral, and fault-tolerant data ag-
gregation/analytics. Specifically, we highlight the com-
plex data path where some data must be pulled directly
from the sensor vendor, despite farm networking chal-
lenges. This need for networked data aggregation across
the farm (or “edge”) cloud, public (or “core”) clouds,
and private (or “vendor”) clouds distinguishes the con-
sequential fault tolerance trade-offs that are unique to
DA environments (e.g., plants might die if not irrigated
on time). Ultimately, by reimagining prior approaches
such as CloneCloud [19], the Comosum design enables
offline data collection and edge analytics during network
outages.

• Reconfigurable control plane: Given software abstrac-
tions and distributed cloud deployment environments,
the Comosum control plane (§§ 3.4) coordinates inter-
module communication. To maintain reconfigurability
and extensibility to heterogeneous devices, this com-
ponent draws from the separation of devices and de-
vice drivers, inter-process communication (IPC), and
SDN. Specifically, Comosum modules rely on a message-
passing [89,92] protocol to abstract away the distributed
deployment environments.

We implemented a version of Comosum that we call Farm-
BIOS. We deployed multiple FarmBIOS instances in the
Azure, AWS, and Google clouds. Further, we deployed these
instances on one commercial farm and two research farms.
Commercial farms are for-profit; in contrast, research farms
are associated with land-grant universities [1, 9]. As a re-
sult, we operate multiple deployments (both in open fields
and greenhouses) throughout the year with different Como-
sum module, cloud, and control plane configurations. The
configurations differ such that they can meet the needs of ani-
mal (§§ 5.1), row crop (§§ 5.3), and specialty farms (§§ 5.2).

The results based on deployments and evaluation show
that Comosum supports extensible, reconfigurable, and fault-
tolerant DA systems. First, we applied FarmBIOS instances
to a plant water stress application, as well as two ML-based
applications that yielded 86% and 97% training accuracy in

vineyard and dairy cow disease detection, respectively (§ 5).
Second, we present an 18-month deployment with a million
sensor readings from 80 sensors networked over cutting-edge
hardware in two farm edge clouds (§§ 5.3). We further an-
alyze Comosum’s reconfigurability trade-offs based on our
extensive deployment experience, application requirements,
and comparative spectrum measurements of a 55-acre urban
farm and a 615-acre rural farm (Appendix B). Third, we show
Comosum’s adaptability to faulty sensors in the field (§§ 6.2),
its tolerance to a network outage over multiple days (§§ 6.1)
at the edge, and the edge analytics’ resilience to network out-
ages (§§ 5.2). Deploying Comosum yielded several surprising
architectural insights. First, failures at the edge (i.e., in the sen-
sors and networking) vary differently from failure towards the
core of the cloud (i.e., Internet and cloud module failures), and
the differences in failure scope had to be identified, escalated,
and optionally tolerated or repaired. Intermittent network fail-
ures were tolerated through offline data collection at the edge,
or by directly performing analytics at the edge. Long-term sen-
sor failures were escalated by digital twins. A digital twin is a
digital representative of a physical object that behaves like its
real-world counterpart. That is, we expanded the failure scope
to cloud-based digital twins of sensors and notified human
operators. We call this an active digital twin. A key takeaway
was that the time to detect and tolerate a system component
failure varied from seconds to weeks. Second, frequent unan-
nounced API or data format changes by vendors led to many
errors. Comosum evolved to shield DA application developers
from this complexity by providing a uniform API; specifically,
a unstructured platform layer and structured application layer.
Third, Comosum was made cloud provider-agnostic by pro-
viding a cloud-independent layer (i.e., through cloud-agnostic
abstractions such as tables/functions) and a separate cloud-
dependent layer (through cloud-dependent services such as
Azure Table and AWS Simple Notification Service).

We present an experience with a deployed networked sys-
tem for DA, our contributions are as follows:

• Three case studies to demonstrate DA research chal-
lenges, and how they motivate our design goals

• An integrative approach that applies and advances the
state-of-the-art to a portfolio of system challenges associ-
ated with building Comosum effectively across multiple
subsystems and contexts (Table 3)

• The design and implementation of Comosum, a cloud-
based architecture that unifies state-of-the-art DA ap-
proaches under a single interface by distilling largely
complex black-box technologies down to classical ideas

• Evidence that Comosum supports various applications,
tolerates intermittent network failures, and can be de-
ployed across different farm types and cloud providers

Paper outline: § 2 describes three DA case studies to mo-
tivate design goals. § 3 delves into the Comosum system

software architecture. § 4 instantiates FarmBIOS, a Como-
sum implementation that unifies otherwise incompatible DA
systems. § 5 describes three FarmBIOS applications and de-
ployment contexts. § 6 describes system adaptations to ensure
long-term maintenance. § 8 puts Comosum in the context
of prior work before concluding in § 9. Appendix B demon-
strates Comosum’s reconfigurability trade-offs.

2 Challenges: Why DA is Hard
Comosum is borne out of four years of collaborative research
building state-of-the-art systems to support DA. We describe
the main challenges in building on existing technologies to
motivate the architecture developed in § 3.

2.1 Challenge 1: Data Aggregation
Data aggregation involves pulling and processing data from
a variety of sources. Consider, for example, DA researchers
in animal science who need real-time monitoring of dairy
cows to facilitate early disease detection [33, 34, 54, 72]. This
requires integrating data from wearable and non-wearable
cow sensors, herd management software, and manual data
collection on site.

Existing wearable sensors capture behavioral, physiolog-
ical, and performance parameters such as physical activity,
rumination and eating time, estrous behavior, and internal tem-
perature (e.g., [2, 3]). Non-wearable sensors include cameras,
weather stations, milk meters and near-infrared spectrome-
ters, and weight scales that deliver milk yield and body weight
from a static location as cows pass through with every milking
session (e.g., [4, 80, 84]). The data monitoring is possible via
systems from various sensor providers running on the farm
computer (e.g., [5, 83, 87]). The providers control and avail
the data for download either as raw files (via FTP dumps) or
JSON (through scripted API calls to the providers’ servers).

However, data aggregation efforts face five major hurdles.
First, the sensor data are siloed in monolithic platforms with
incompatible APIs. Second, the datasets are delivered in vari-
ous incompatible formats (e.g., Excel, JSON, or DIF). Third,
the data is distributed between the farm computer and numer-
ous sensor providers’ servers. Fourth, the patchy data integra-
tion programs are dependent on the farm computer’s operating
system (e.g., to run PowerShell scripts) and disk storage lay-
out (e.g., hardcoded, per-provider directories). Fifth, any ad
hoc integration protocol is likely to introduce data sparsity
as new sensors are incorporated and old sensors are retired.
These hurdles highlight the need to aggregate sensor data from
heterogeneous devices and platforms. The system should en-
able data aggregation from arbitrary sensor vendor platforms,
data formats, and data locations.

2.2 Challenge 2: Data Analytics
Data analytics involves extracting actionable insights from big
data. It is important in managing and predicting farm inputs
and expected outputs, respectively. Consider, for example,
DA researchers in plant pathology who need fast methods to

detect vineyard diseases affecting grape and wine quality [7,
22,68,93]. This requires detecting symptoms typically visible
on the leaves.

Existing grapevine disease detection methods include
molecular tests, remote sensing, and digital models. Molecular
tests involve plucking diseased leaves to be analyzed in labo-
ratories. Remote sensing and digital models combine aerial
imagery from Unmanned Aerial Vehicles (UAV), vegetation
indices, and machine learning (ML) techniques [45,52,53,68].

However, these existing data analytics approaches face
three challenges. First, current remote sensor data cleaning
and pooling processes, which are often manual, do not enable
cross-farm analytics. Secondly, ML models have been shown
to produce contradictory analyses depending on the choice of
hyperparameters [15, 20, 81]. Lastly, molecular tests are slow
(i.e., on the order of days) to yield actionable results in a set-
ting where every second implies further disease spread. These
challenges highlight the need for a reconfigurable approach
for data storage and model training to enable fast iterations
in any environment. The system should enable fast plug-and-
play of different analytics modules and sensing mechanisms.

2.3 Challenge 3: Fault Detection/Tolerance
Fault tolerance involves detecting, recovering from, and op-
tionally repairing system faults. It is important in providing
timely manual or automated interventions when farm monitor-
ing assets such as sensors have failed. Consider, for example,
DA researchers in plant breeding who need to understand wa-
ter status effects on plant growth by controlling for variables
such as temperature, soil moisture, and CO2 levels [49,71,86].
This requires reliable sensor data collection with both short-
term and long-term storage, processing, and actuation.

Existing systems (e.g., [78, 88]) generally comprise sens-
ing hubs, an Internet gateway device, and optional cloud
storage and processing. The sensor hubs communicate to
the gateway over various protocols such as unlicensed TV
White Spaces (TVWS) [88] or ZigBee [40]. The gateway
relays the sensor data over various media (e.g., 4G/3G [40],
WiFi [85]) to diverse cloud-based routing hubs (e.g., Azure
IoT Hub [88], AWS IoT Core [46]) for long-term storage.
With a few exceptions [26, 46], prototype deployments are
often outdoors [85, 88].

However, fault detection and tolerance are difficult due, in
part, to three challenges related to cascading failures. First,
faulty sensors affect data collection. Second, network outages
affect data storage and data processing both locally at the
farm and in the cloud. Third, the complexity and heterogene-
ity of existing hardware/software systems pose significant
troubleshooting issues in the field. Individually, these fail-
ures can present real consequences in farms (e.g., plants are
not irrigated, animals are not fed, etc.). This highlights the
importance of fault tolerance and detection in DA environ-
ments. The system should detect, localize, tolerate and/or
repair failures in sensor, network, and software components.

2.4 Summary and Design Goals
These case studies highlight interoperability challenges within
state-of-the-art systems. These challenges map to three core
system design goals:

• Extensibility: In addressing data aggregation (§§ 2.1),
we aim to provide an extensible interface that can gen-
eralize sensing, analytics, and actuation across APIs,
clouds, hardware, and platforms.

• Reconfigurability: In addressing data analytics (§§ 2.2),
we aim to allow different points in the configuration
space towards data models that can be trained and used
across different networking and cloud deployment sce-
narios.

• Fault Tolerance: In addressing fault detec-
tion/tolerance (§§ 2.3), we aim to detect and/or
tolerate intermittent failures despite the heterogeneity
of hardware, farm types, and cloud services.

3 Comosum Architecture

3.1 Overview
In this section, we describe Comosum’s hardware, software
and distributed cloud - the main components in the quest to
sense, analyze, and actuate on rural farms (see Figure 1).

Hardware encompasses sensing, networking, and control
devices. Sensing devices produce updates based on changes
in real-world conditions such as temperature, soil moisture,
vegetation density, etc. Networking devices provide infras-
tructure support via data routing and transfer between other
devices, of which routers, switches, and antennas are typi-
cal representatives. Control devices offer digital interfaces
with programmable logic control (PLC) functions. While pro-
grammable, control devices are limited to firmware running
on a few kilobytes of memory.

Software encompasses possible manipulations of data gen-
erated by the hardware entities. The software modules, which
we describe from left to right as shown in Figure 1, offer
abstractions on the acts of sensing, storing, computing, and
intervening based on real-world changes. The changes are
communicated via interrupt and poll mechanisms (see Ta-
ble 1). The telemetry module serves as an interface to capture
and reflect physical and virtual state changes. Whereas phys-
ical updates read directly from sensing devices (e.g., GPIO
pins), virtual updates are third-party reports (e.g., Excel files)
from vendors on proprietary sensors (see §§ 3.3). The stor-
age module is a logical abstraction over storage structures
(databases, files, etc.) and formats (Excel, CSV, etc.). The
compute module captures the various networked, temporal,
and spatial arrangements of compute devices (see Cloud be-
low) to produce actionable results. Together, the storage and
compute modules form the analytics module. Henceforth, the

analytics module is used interchangeably with the storage and
compute modules. Lastly, the actuation module bridges the
analytics module to control devices and farm operators.

Distributed cloud encompasses ubiquitous, convenient, on-
demand network access [60] to storage media and compute
devices at the farm edge, the public cloud, and the private
cloud (i.e., sensor vendor servers, university servers, etc.).
Storage media vary from low-end USB sticks to a pool of
hard disk drives in the cloud. Compute devices span low-end
Raspberry Pis at the edge to high-end virtual machines (VMs).

To achieve reconfigurability and extensibility, Como-
sum draws inspiration from Software Defined Networks
(SDNs) [18]. Here, the data plane spans the hardware and
software. The control plane then is the custom configuration
process of hardware components and software modules to
solve individually unique DA problems (e.g., Case 1-3 in § 2).
Borrowing from the object-oriented design paradigm (OOP),
the fundamental Comosum unit is the instance.

Comosum instance modules operate in an event-driven
approach with per-module processes [89]. Independent,
message-passing [92] modules have two advantages. First,
this enables modules to be deployed anywhere in the dis-
tributed cloud. Secondly, it simplifies reasoning about appli-
cation correctness for multi-threaded modules. For instance,
irrigation should be triggered in the actuation module only
after a dry forecast is observed in the compute module.

To summarize, each Comosum instance is a configuration
of sensor, compute, storage, and actuation modules to map and
solve different sets of real-world agricultural challenges. In
the following subsections, we describe in depth the extensible
Comosum modules, the Comosum distributed cloud architec-
ture and its vendor neutrality goal (§§ 3.3), and the Comosum
control plane’s reconfiguration capabilities (§§ 3.4).
3.2 Comosum Modules
Telemetry Module. The telemetry module is the entry point
into a Comosum instance’s data plane. The telemetry module
requires that any interested parties (observers) are notified of
new sensor readings. To that end, we design the module as an
abstract class following the observer design pattern [61]. The
interface comprises register, notify, read, and run operations.
In managing observers, the observer argument is an abstract
data type (ADT). Upon being notified, observers receive a
message indicating the state change. The message is similarly
an ADT, and it is used to receive new updates through an
invocation of the telemetry module’s read method. By using
an ADT, the module enables chained updates where down-
stream modules may serve as observables (other telemetry
modules) and observers (any abstraction implementing the
observer pattern). In practice, sensor updates are consumed
by the analytics module.

Storage Module. The storage module is inspired by the
classic UNIX [73] file system interface with simple read
and write operations. To align with another prevalent storage
model, the change feed, the module additionally supports

Hardware Devices

REST, FTP

Networking

Sensors

Farm House

Vendor Cloud Actuation

Analytics

StorageTelemetry Compute

read / write

register

Software

Core Cloud

Analytics APITelemetry API Actuation API

notify
read

activate

1a

1b

1c

Edge Cloud

2b

2a

Actuation

Analytics

StorageTelemetry Compute

read / write

register

Software

Edge Cloud

notify
read

activate

3

3

4

4

01001
01001

01001
01001

Figure 1: The Comosum distributed cloud partitions modules between the farm (“edge"), remote (“core"), and sensor vendor clouds.

change_feed and next methods that operate on iterators of
new data (inserts, updates). Besides mimicking UNIX and
database semantics, we strive for transparent access of stored
objects [76]. In other words, similar to the observer argument
in the telemetry module, the path argument in reads and writes
is an ADT. This makes the storage module extensible to
storage calls of various structures and data formats. Finally,
to accommodate modules operating with topic-based storage
services, the storage module supports the publish/subscribe
paradigm. The pub-sub interface enables other modules to
push data in addition to subscribing to updates based on topics
of interest. Thus, the storage module exposes subscribe, push,
pull, and notify operations.

Compute Module. The compute module operates on
state changes from the telemetry and storage modules.
Therefore, the module similarly follows the observer design
paradigm. Acting as an observer, the compute interface sup-
ports four operations, namely notification_sensor_rcv, notifi-
cation_storage_rcv, analytics, and run. The first two can be
invoked to receive data based on previous compute module
registrations and subscriptions to the telemetry and storage
modules, respectively. The analytics method receives new
procedure calls off the wire, and it uses the metadata and
data to execute local/remote application logic. Optionally, the
compute module invokes the storage module’s write or push
methods to store intermediary results.

Actuation Module. The actuation module is the final end-
point in the data plane. Like the sensor module, the actuation
module provides an interface to physical operation of and
virtual notification to real-world entities. That is, the actua-
tion is either automated or mediated. For automated actuation,
devices between the farmhouse and the field issue command
messages. In this context, the module issues activate calls to
the appropriate control devices. The command argument op-
tionally identifies the device to execute the command. Upon
an activate invocation in a mediated actuation scenario, the
actuation module effectively is a wrapper for push notification
services such as text messages and email.

3.3 The Comosum Distributed Cloud
The motivating case studies (§ 2) demonstrated that the
sources of data consumed by DA applications greatly varies.
While the sensor data is mostly generated locally, the initial
storage and compute operations are executed on-demand by
remote servers which are often owned by the sensor providers.
Thus, another challenge for Comosum is achieving vendor
neutrality. That is, hardware/software innovations must not
be tied to a particular cloud-based service vendor.

To that end, we introduce the Comosum distributed cloud
abstraction to support elastic, vendor-neutral sensing, stor-
age, compute, and actuation capabilities. The Comosum dis-
tributed cloud (Figure 1) consists of the farm (or “edge”), pub-
lic (or “core”), and private (or “vendor”) clouds. The vendor
cloud maps the more complex data path where some data must
be pulled from sensor vendor servers instead of directly from
the sensor abstracted away by Comosum. Unlike the “edge”
and “core” clouds, Comosum modules cannot be deployed in
the vendor clouds. Further, the Comosum distributed cloud de-
sign is similar in motivation to CloneCloud [19]. CloneCloud,
which offloads computation from remote devices to the cloud,
assumes an always-available, more powerful compute pool
in the cloud. In contrast, Comosum enables computation and
fault tolerance at the edge (remote device) when the (core)
cloud is unavailable or too expensive to use.

While the edge cloud, core cloud and vendor cloud separa-
tion meets the resource elasticity and vendor neutrality goals,
it also collides with limited bandwidth at farms.

On one hand, the edge cloud provides storage and computa-
tion closer to the data source. For applications with ephemeral
storage and computation needs, this eliminates core cloud con-
nectivity and latency challenges. Specifically, by leveraging
networking advances such as LoRa [8] and TVWS [12], the
edge cloud is capable of completely disconnected operation
in deployments with large variations in area and granularity.
Conversely, the edge cloud is generally unsuitable for storage-
and compute-intensive Comosum applications (e.g. §§ 2.2).

On the other hand, the core and vendor clouds offer sig-

Module Interface Method In/Out? Int/Poll? Description

register(observer) Input Int Add sensor update observer
telemetry notify(update) Output Int Notify observers of a new update

read(update) Output Poll Read latest update
run() Input Int Run the sensor module

write(path, data) Input Int Write to storage medium
read(path) Output Poll Read from a storage medium
change_feed() Input Poll Offer an iterator to new data

storage next(iterator) Output Poll Get the next record from an iterator
subscribe(subscriber, topics) Input Int Register a new subscriber
push(topic, data) Input Int Publish new updates to storage
notify(subscriber, data) Output Int Push new updates to subscribers
pull(topic) Output Poll Pull recent updates, if any
run() Input Int Run the storage module

notification_sensor_rcv(context) Input Int Receive data from sensor update
compute notification_storage_rcv(new_data) Input Int Receive data from storage subscription

analytics(arg) Input Int Execute application business logic
run() Input Int Run the compute module

actuation activate(cmd) Output Int Execute a command on a control device
run() Input Int Run the actuation module

Table 1: The unified Comosum API is inspired by classic system design approaches (e.g., design patterns [61], UNIX file system [73]).

nificantly more storage and computation capacity, albeit at
a higher network latency cost. Therefore, faced with ‘reli-
ably unreliable’ [42] Internet at remote locales, an application
whose progress relies on a consistent connection to the core
and vendor clouds is bound to fail. Losing connection to
cloud-based time critical decisions risks real consequences
for farmers; plants may perish from water stress; cows may
die from preventable diseases or difficult births; and vast vine-
yard swaths may succumb to virus infection.

In summary, the edge cloud, core cloud, and vendor cloud
separation meets Comosum’s resource elasticity and ven-
dor neutrality goals. Note, however, that it also reveals dif-
ficult system trade-offs; for instance, latency in the context
grapevine disease detection (§§ 5.3).

3.4 The Comosum Control Plane
An important Comosum goal is that initial design allows for
the integration of devices and software modules. This is the
guiding principle of the Comosum control plane. The control
plane draws inspiration from device drivers, IPC, and SDNs.
Comosum leverages a diverse array of networking and storage
primitives. These primitives in turn define extensible libraries
and configuration templates that accommodate communica-
tion between devices and software modules from current and
future DA systems.

On the hardware front, sensing devices require wrappers
for new serial device drivers or wrappers to existing standard
interfaces (e.g., RS485 [69]). Networking devices necessitate
new packet processing interfaces. Finally, control devices
typically expose wrappers for their PLCs.

On the software and cloud components, the control plane
specifies inter-module communication. Due to the distributed

nature of Comosum modules, we use message passing [89,92]
where modules communicate as follows.

Modules call a dispatcher with a message specifying the
peer module to contact. The dispatcher in turn maps message
queues to socket connections to the peer modules. In this
scheme, the modules remain oblivious to the underlying net-
working. Further, this simplifies part of the control plane to IP
address tuples which can be edited as the underlying network
changes. While communication between Comosum modules
is sockets-based, any module calls to other systems (e.g sen-
sor vendor clouds) uses whatever higher-level abstraction that
the external systems expose (e.g., REST APIs).

As discussed in the overview (§§ 3.1), a key Comosum goal
is to easily reconfigure devices and software modules to fit
different applications. Therefore, Comosum implementations
must remain as close to a set of reusable configuration and
compilation templates as possible. Configuration templates
include cloud connection strings, sensor SKUs, IP addresses,
etc. Compilation templates include Docker files [24], remote
procedure call (RPC) definition files, package dependencies,
etc. Thus, the hardware and software components are recon-
figurable to solve various DA challenges.

4 FarmBIOS: A Comosum Implementation

The particular instantiation of the Comosum architecture pre-
sented here is the Farm Basic Input Output System (Farm-
BIOS), drawing inspiration from its unification of routinely
incompatible hardware and software systems. Henceforth, we
use FarmBIOS and Comosum interchangeably. FarmBIOS
code and research datasets are open source (Appendix A).

We built FarmBIOS in Python, atop Google’s protocol
buffers (also known as protobufs) [35]. Protobufs provide
a language-independent, efficient serialization protocol that
allows not only the construction of Comosum modules in
numerous languages, but also extensibility of RPC templates
to enable integration with arbitrary DA systems. Figure 2
shows the FarmBIOS stack. Next, we briefly describe the
most salient components of FarmBIOS instances.

Software

FarmBIOS Lib

Analytics

Storage

FarmBIOS Lib

FarmBIOS Message Format

Network (TCP Sockets)

FarmBIOS Control Plane (build, init scripts)

Applications

FarmBIOS Lib

config

Compute ActuationTelemetry

FarmBIOS RPC Protocol (register, read, notify, etc)

01110110

run run run

Figure 2: FarmBIOS - an implementation of Comosum

4.1 FarmBIOS Control Plane
At the top of the FarmBIOS stack, applications specify soft-
ware configurations to the FarmBIOS control plane, which
(1) provisions the appropriates edge and core cloud compute
and storage resources (e.g., VMs, databases), (2) instantiates
the required modules, and (3) builds any required Docker con-
tainers. Based on the application specific requirements, the
modules are deployed and started in the edge or core cloud.
Note, however, that not all modules in the middle layer are
required by every application. These à la carte application con-
figurations are at the heart of Comosum’s vendor neutrality
(e.g., pairing Azure compute and AWS storage).

4.2 FarmBIOS Library
The FarmBIOS library (FarmBIOS Lib) is the implemen-
tation of the Comosum module abstraction. That is, the li-
brary allows the customization of base telemetry, storage,
compute, and actuation module classes to fit the purposes
and configurations of different applications. Practically the li-
brary deals with challenges related to perpetual deprecation of
hardware in the field and software libraries. The FarmBIOS
Lib addresses this data processing challenge by providing
wrappers to an array of services such as tables, databases,
CSV readers, and email clients. In the current implementa-
tion, we provide wrappers around the Azure Table [62], Azure

CosmosDB SQL [63], Azure Machine Learning Workspace
(Azure ML) [64], Twilio [48], and OpenWeather [47] ser-
vices in addition openpyxl [32] and CSV readers - with more
templates to be added as our array of supported applications
expands. Therefore, FarmBIOS Lib is a structured, cloud-
independent application layer.

4.3 FarmBIOS RPC Protocol
FarmBIOS is built in a network-agnostic manner. This im-
plementation choice is important for extensibility to arbitrary
DA platforms. Specifically, the modules are unaware of dif-
ferences between local and remote peer modules. By local
we mean modules operating within the same host. Local and
remote operations entail modules passing and receiving mes-
sages to/from their dispatcher. The dispatcher is tasked with
routing the procedure call to the appropriate peer module
based on the control plane configuration. The RPCs rely on a
client-server architecture built on TCP sockets wrapped by a
selector operating per-connection queues, and each connec-
tion tunnels to a peer module. In both scenarios, any data
communication occurs over the common FarmBIOS RPC
protocol. Note that the underlying (TCP) communication pro-
tocol is known only to the dispatcher, but not the modules.
Further, the RPC protocol makes no assumptions on the data
formats, thereby maintaining data introspection/formatting
flexibility for applications through FarmBIOS Lib.

4.4 FarmBIOS Message Format
The Comosum modules exploit OOP, UNIX, IPC, and other
intuitive semantics. In practice, however, the underlying im-
plementations address two major obstacles. First, the number
of data formats, which represent technical compatibility ne-
gotiations between research farms and sensor providers, are
both unwieldy and subject to unexpected changes [23]. There-
fore, similar to the Linux file abstraction, Comosum offers a
uniform, byte-addressable format for inter-module data com-
munication - the FarmBIOS Message Format. This format
is an unstructured platform layer. Secondly, host operating
systems eventually get upgraded or lose long term support.
Comosum achieves independence from the host OS by lever-
aging application orchestration tools such as Docker [24] and
Kubernetes [29].

5 Applications & Deployment Experiences

In this section, we describe the hardware contexts, FarmBIOS
usage (§ 4), and deployment contexts of the motivating chal-
lenges (§ 2) to showcase Comosum’s range of applications.
Specifically, the applications are different Comosum configu-
rations that meet the needs of animal farms (§§ 5.1), specialty
farms (§§ 5.2), and row crop farms (§§ 5.3).

5.1 CowsOnFitbits
Building on Challenge 1 (§§ 2.1), CowsOnFitbits is a data
aggregation component supporting early disease prediction
models which achieve 97% training accuracy [59]. The edge

Training Data Location Data Size Compute Storage Runtime Accuracy

Edge Local 4MB 8 CPUs 256GB 27.1s 84%
Edge Cloud - 8 CPUs 256GB 35.6s 86%

Azure ML Cloud - 2 vCPUs 100GB 86.5s 86%

Table 2: Grapevine disease detection: model training runtime and accuracy for various WineGuard configurations

cloud is a farm PC (16GB RAM, 500GB storage) running the
Windows 10 Enterprise OS. The OS features a Docker engine
deployed on its Windows Subsystem for Linux (WSL). The
edge is connected to vendor clouds and a university cloud via
a 1Gbps Ethernet connection.

CowsOnFitbits leverages FarmBIOS modules (packaged as
Linux containers) as follows. Sensor reports are made avail-
able by the providers via FTP dumps to the edge cloud. The
telemetry module continuously polls the local disk, awaiting
the FTP dumps. New reports trigger the telemetry module’s
notify function call which, in turn, notifies its local compute
module. The telemetry module’s read method is called by the
compute module. The compute module aggregates sensor data
from multiple streams to be stored in the private university
cloud, where a module exposes a REST API for data access
and queries by ML applications. In the cloud, cows are iden-
tifiable across data streams through farm-unique cow ID’s.
The storage calls are made to an intermediate, non-FarmBIOS
module operating a Cassandra database [70].

CowsOnFitbits has been actively tracking approximately
1,500 cows in a commercial farm for nearly three years;
having collected 23GB of datasets at the time of writing.
The testing/deployment experience with CowsOnFitbits of-
fers two observations. First, the unstructured platform layer
(§§ 4.4) is more stable than the structured application layer
(§§ 4.2). Specifically, unannounced API/format changes on
the vendor side, which routinely occur every few weeks, intro-
duce breaking changes in FarmBIOS Lib. The API breaking
changes affected the API to the vendor-specific application
layer changes (i.e., breaks). FarmBIOS tolerates these API
changes by insulating itself with vendor-independent layers
that use unstructured files to store data from the vendor along
with methods that can interpret the unstructured data accord-
ing to the latest vendor interface definition. The CowsOnFit-
bits system adapted to a recent change in approximately one
day. This required minor application changes and deploying a
new Docker container. Subsequent versions may benefit from
Kubernetes [29], especially its rollbacks and canary deploy-
ments. Second, we observed missing/duplicate data in the
core cloud due to mismatched interpretation of floating points
in protobufs vs Python, missing vendor reports, unexpected
signal interference between RFID tags and electrical engines
for manure systems, or farm workers tripping over wires. The
floating point issue was resolved through meticulous end-to-
end testing of FarmBIOS modules over the course of a year.
The missing report and power outage issues remain as open
issues, though we propose a potential fix (see § 6, § 7).

5.2 WineGuard
Building on Challenge 2 (§§ 2.2), WineGuard is a data ana-
lytics platform for grapevine disease detection; achieving up
to 86% training accuracy. WineGuard’s sensor data originates
from plane flights over California vineyards in September
2020 using NASA’s Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) [36]. The spectroscopic sensor data is
publicly accessible from the NASA cloud [66]. The AVIRIS
data is merged with disease ground truth data from molecular
tests on select leaves from the same period. The merged data
are uploaded to the Azure Cloud for experimental retrieval.

WineGuard employs FarmBIOS modules as follows. We
built a wrapper for Azure ML [64] to kickstart a reconfig-
urable model training pipeline. Note that the application can
similarly be built using equivalent tools from other cloud
providers such as Amazon SageMaker [77]. The model train-
ing configuration includes Azure subscription ID strings, the
name of a pre-provisioned workspace, the location of the
training data, and a text file with required Python packages.
Upon issuing the compute module’s analytics command, the
configuration is deployed for training.

We deployed the WineGuard training pipeline in an edge
cloud and in the Azure Cloud (see Table 2) 2. This deploy-
ment presents several insights. First, the model accuracy is
relatively stable regardless of training location, and, as ex-
pected, training at the edge with local data incurs the least
runtime. Second, there is a 31% runtime overhead when fix-
ing the location at the edge. We observed that this is due to
an initial "warm-up" of the training data download from the
cloud. In the best case, cloud-based training and inference
are instantaneous. Otherwise, during disconnected periods,
inference can be done faster and locally at the edge. Third, the
satellite coordinate data were occasionally off by a few meters
compared to the ground truth disease data. Without requiring
manual intervention, analytics on sparse data in near real-time
was necessary to correct the errors. In particular, FarmBIOS
enabled the rectification of the divergence by selecting only
spectroscopic bands with reliable data while still enabling the
training/inference to proceed.

5.3 WaterGuard
Building on Challenge 3 (§§ 2.3), WaterGuard is a plant
water stress alert system for research farms. WaterGuard is
prototyped with research software and hardware provided by

2We tried to use a Raspberry Pi 4B (4 CPUs, 32GB storage) as the edge
cloud. However, the ARM processor could not execute Docker containers
built on an x86-64 architecture (the alternative edge used here) [14]. Building
on an armv7 base image also failed due to end of support for distro updates.

TVWS Base Station

Sensor
Hubs

Sensor
Hubs

01011

01011

11001

Edge Cloud 2: LoRa + 4G

Edge Cloud 1: LoRa + TVWS

Networking: Campus Fiber Optic

TVWS Base Station

Sensor Hubs Base Station

TVWS Client

LoRa
module

4G hotspot

Base station

LoRa
module

TVWS Client

Base station

Azure Cloud

Figure 3: The Comosum hardware repertoire deployed for 18 months. Edge Cloud 1 (active since October 2020) serves an apple orchard
water stress study. Edge Cloud 2 (active since March 2021) serves high-throughput corn, hemp, and strawberry breeding experiments.

Microsoft Research [88] (Figure 3). The hardware features
sensor hubs from Seeed Studio operating on eight D-size bat-
teries and supporting up to 13 analog and digital sensors. The
sensor readings are networked over LoRa [8] to a base station
comprised of an edge device, a LoRa module, and LoRa an-
tenna (5dBi, 900MHz). The edge device is a general purpose
UpBoard (4GB RAM, 32GB storage) running the Windows
10 IoT Core OS. In addition to the LoRa components, the de-
vice is connected to a TVWS Client (6Harmonics Inc), which
provides physical and data link connectivity over a single
TV channel (18, 497MHz) to a TVWS Base Station (TVBS)
located at a research barn approximately a quarter of a mile
away. Finally, the TVBS is wired to the university’s 1Gbps
fiber-optic Internet as a gateway for sensor data to Azure.

WaterGuard relies on FarmBIOS modules as follows. Sen-
sor readings are relayed to Azure. Note that Azure table stor-
age offers no change feed for observer notifications. Thus, the
telemetry module relies on periodic reads (i.e., polling the
storage module) to detect inserts that, in turn, should trigger
its notify method. The analytics unit is notified via a notifi-
cation_sensor_rcv call to the compute module. Next, based
on the configuration received from the new update, the com-
pute module reads from the shared storage module to get
data on the appropriate sensor hub and start the analytics.
Finally, upon reaching an irrigation decision, the compute
module calls activate on the actuation module which notifies
the researchers over text message using the Twilio API [48].

WaterGuard has been deployed for 18 months in two edge
clouds with nine sensor hubs (Figure 3). Each sensor hub av-
erages eight sensors and 223 days of data collection. Together,
the hubs have collected over a million sensor readings. The
biggest insight from this deployment was the unexpected mun-
dane work required to adapt experimental DA systems ([88])
to new settings where failures can happen anywhere in the
sensor-to-cloud continuum (see § 6).

6 Adapting to the Wild

The previous section described the hardware configurations,
API usage, and deployment experiences/insights from three
FarmBIOS instances. Here, we present the successes and
system adaptations necessary for long-term Comosum main-
tenance. Though the adaptations are specific to WaterGuard,
the key idea of active digital twins is broadly applicable.

6.1 Offline Data Collection Is Not Enough
WaterGuard is capable of tolerating days-long network out-
ages by relying on offline data collection and standard hard-
ware redundancy. As shown in 4a, the pilot sensor hub (Sen-
sor Hub 1) achieved disconnected operation during a snow
storm and heat wave in February 2021 and May 2021, respec-
tively. Until the 4G hotspot connectivity was restored, the
sensor data was simply stored at the edge device.

However, data aggregation and analytics are still affected
by faulty sensors and human error. Concretely, faulty CO2
sensors drained the batteries faster than expected (4b) and/or
slight misconfigurations place data in incorrect columns. Both
faults effectively result in data discontinuities (4c).

6.2 The Fix: Active Digital Twins
To streamline fault detection, Comosum evolved to include
reactive monitoring [90]. That is, detecting, escalating, and op-
tionally repairing system faults at different failure scopes. The
Comosum design easily lends itself to this task by introducing
active digital twins. A digital twin is a digital representation
of a physical object, process, or environment that behaves
like its real-world counterpart. In contrast, active digital twins
combine the traditional digital twin concept with Comosum’s
actuation design.

The active digital twins were an emergent concept as we
iterated over FarmBIOS to make it more fault-tolerant, espe-
cially in outdoor research farm deployments where a delayed

Hub 2 outage

Hub 1 isolated in snowstorm

Sensor Hub 1 Temperature

Sensor Hub 2 Soil Moisture

(a) Network outages

Hub 1 drains over 1 year
Hub 2 drains in 2 months

(b) Faulty sensors

Data discontinuities

(c) Data discontinuities

Figure 4: Adapting FarmBIOS to (a) network outages, (b) faulty sensors, and (c) data discontinuities

detection could imply troubleshooting sensor hubs in two
feet of hardened snow (Figure 4a, [75]). When the digital
twin diverges from its physical twin beyond a reconfigurable
margin (e.g., five minutes), an action is taken by the system
such as sending notifications to human operators. In Como-
sum, only the sensor hubs are twinned. We modeled timely
data collection, and divergence from the physical system is
characterized by missing telemetry over a 30 minute period.

Concretely, we implemented a web-based, reconfigurable
notification system with three key functions. The Status page
leverages the WaterGuard sensor hubs’ digital twins to display
their connection state and last activity. The Configuration page
provides an interface for retrieving and editing each sensor
hub’s port configurations. Lastly, the Notifications page pro-
vides a reconfigurable set of functions including (1) whether
the notification system is enabled, (2) an editable threshold
(in minutes) for triggering outage notifications, (3) an editable
frequency for outage checks, and (4) the set of emails to be
notified during outages. Note that the notification system
relies on data aggregation and analytics across multiple, sepa-
rate cloud services (i.e., Azure IoT Hub, Azure Table, AWS
Simple Notification Service), and the implementation simply
plugs Comosum module implementations of these services
with minimal or no change to other modules. Therefore, it is
broadly applicable to detect failures at different stages from
the sensors at the farm to the modules in the cloud.

7 Practical Insights and Limitations

The motivating challenges (§ 2) highlighted major interop-
erability issues within state-of-the-art DA platforms (see Ta-
ble 3 for a summary). We mapped these challenges to three
core system design goals: extensibility, reconfigurability, and
fault tolerance. We summarize below both persistent and new
lessons from our experiences, and, more importantly, how
FarmBIOS practically addressed the challenges. We also state
the system’s current limitations.

• Extensibility to new DA vendors comes with (minor)
costs: Table 3 details the challenges in DA data aggre-
gation. Our design goal was to provide an extensible

interface that can generalize across APIs, clouds, hard-
ware, and platforms. FarmBIOS provides a unified inter-
face to merge/analyze/actuate datasets spread across the
distributed cloud. For instance, CowsOnFitbits (§§ 5.1)
enables the merging of datasets from four different ven-
dors. The tradeoff is that, for each new vendor, a new
script (less than 50 lines of code) must be written to
move vendor reports to the appropriate directories for
FarmBIOS module triggers.

• The cloud surprisingly complicates reconfigurabil-
ity: Table 3 details difficulties in system reconfigura-
tions to support different farm networking and analyt-
ics pipelines. Our design goal was to allow different
points in the configuration space towards data mod-
els that can be trained and used across different net-
working and cloud deployment scenarios. Indeed, we ex-
plored numerous hardware/software configuration pos-
sibilities (see Appendix B). However, as observed in
WineGuard (§§ 5.2), the interface between the cloud
and the long-lived deployed systems was not stable. In
particular, the Azure ML APIs were subject to parame-
ter deprecations which affect the WineGuard compute
configurations. FarmBIOS evolved around these exter-
nalities by treating incoming parameters in telemetry and
analytics modules as abstract data types. The result is a
stable platform that shields users from these volatilities.

• Failure in DA systems is the norm, not the excep-
tion: Table 3 details the heterogeneity and failure cases
that complicate DA system deployments and mainte-
nance. Our design goal was to detect and/or tolerate
intermittent failures despite the heterogeneity of hard-
ware, farm types, and cloud services. In CowsOnFit-
bits (§§ 5.1) for instance, we observed missing data due
to sensing/networking failures (frequency interference
between sensors and manure systems), human factors
(tripping over wires), etc. In another instance (Wine-
Guard, (§§ 5.2)), analytics on sparse data is a necessity
for deployed DA systems. We demonstrate how Farm-
BIOS copes with the unreliability of the underlying sys-

Why It Is Hard System Challenge Design/Implement Decisions Supporting Results & Contributions

Incompatible platforms Reuse classic ideas (§§ 3.1, §§ 3.2) Unified platform API (§ 5)
Incompatible formats Byte-addressable payloads (§§ 4.4) Extensible libraries (§§ 4.2)

Data Aggregation Distributed data Mask data path/sources (§§ 3.3) Merged across clouds (§§ 5.1)
Host dependence Containerization (§§ 4.4) Cross-architecture transfer (§§ 5.1)

RPC dispatcher (§§ 4.3) Cross-platform transfer (§§ 5.1)

Manual processing Comosum design (§ 3) Automated processing (§§ 5.2)
Data Analytics Unreproducible models Reconfig. models (§§ 3.3, §§ 3.4) Distributed training (§§ 5.2)

Data sparsity Active digital twins (§§ 6.2) Divergence detection (§§ 5.2)
Slow actuation Comosum design (§ 3) Sub-minute inference (§§ 5.2)

Faulty sensors Standard hardware redundancy (§§ 6.1) 18-month deployment (§§ 5.3)
Active digital twins (§§ 6.2) Reconfig. notification system (§§ 6.2)
Reconfig. control plane (§§ 3.4) Reconfig. networks (§§ 5.2, Appendix B)

Fault tolerance Network outages Edge analytics design (§§ 3.3) Edge inference (§§ 5.2)
Offline data collection (§§ 3.3) Tolerate 7-day outage (§§ 6.1)

Complexity/heterogeneity Modularity (§§ 3.2) Comosum design (§ 3)

Table 3: A summary mapping of systems challenges to Comosum design decisions and their supporting results

tems through the broadly applicable idea of active digital
twins. In the case of frequency interference, for exam-
ple, the RFID sensors could be twinned. In the vineyard
context, the error message indicating mismatch between
ground truth and satellite data could be used as input for
a digital twin model.

• FarmBIOS evolution and limitations: As emphasized
above, failure is the rule and not the exception. Farm-
BIOS was designed to tolerate failure, and as stated in
§§ 2.3, plant and livestock depend on a robust system.
Therefore, the system was improved over time. For in-
stance, the active digital twin implementation relied on
the telemetry module abstraction to increase fault toler-
ance. One limitation is the lack of support for automated
movement of computations between the edge and core
clouds during permanent power/network outages. Re-
call, however, that the edge side of the architecture is, in
fact, capable of operating autonomously, at a minimum
to retrieve and store sensor data (§§ 5.3) and, if so con-
figured, perform local computation (§§ 5.2). We leave
this limitation for future endeavors.

8 Related work

8.1 Programming Frameworks
To streamline application development and partitioning for
resource-constrained environments, recent community efforts
leverage the cloud for mobile and IoT applications. By rewrit-
ing application executables, the CloneCloud [19] architecture
intelligently partitions program portions for dynamic exe-
cution between mobile devices and their cloud twins. The
partitioner identifies expensive application portions through
static and dynamic code analysis that informs an optimizer to
solve the execution partitioning challenge. Along with Edge-
Prog [55] and like CloneCloud, the TinyLink [26,39] systems

form a set of cloud-native, generative systems of hardware
configurations and software executables for IoT applications.
TinyLink and EdgeProg expose high-level APIs and If-This-
Then-That (IFTTT) languages to abstract away the low-level
knowledge for developers, respectively.

In line with the prior work, Comosum exposes high-level
APIs for interfacing with IoT platforms without deep knowl-
edge of the underlying networking and hardware. Unlike
CloneCloud, Comosum partitions applications at the module
level, not the instruction level. Departing from EdgeProg’s
use of IFTTT and TinyLink’s exclusive support of applica-
tion development in C-like languages, Comosum supports
module development with any language compatible with the
(de)-serialization protocol shared by the modules.

8.2 Agricultural Sensor Networks
The rise of low-cost IoT sensor networks has led to an explo-
sion of new communication standards and protocols being
ported to industrial and consumer applications. For example,
like WaterGuard, Gutiérrez et al. [40], Ahmad et al. [6], and
Vasisht et al. [88] showcase the application of GPRS, XBEE,
and TVWS technologies to agricultural monitoring systems,
respectively. Further, Ayoub et al. [11] and Jawad et al. [50]
present detailed overviews of both power-hungry (e.g., WiFi,
Bluetooth, etc.) and low power wide area network (LPWAN)
technologies (e.g., LoRa, NB-IoT, etc.) and their recent appli-
cations to, among others, dairy health care, automation, and
greenhouse monitoring. Comosum demystifies these novel
networking technologies’ potential and limitations to interdis-
ciplinary audiences interested in similar applications.

Besides IoT networking standards, the literature identi-
fies open challenges in IoT networking, hardware, and soft-
ware (co)design. The most salient include extensibility [82],
durability [13], reliability [37, 82], modularity [82], scalabil-
ity [37], energy efficiency [39, 82, 88], and interoperability

among heterogeneous devices [82]. The Comosum design ad-
dresses extensibility, durability, reliability, modularity, config-
urability, and interoperability. Further, scalability is indirectly
addressed through decoupling and thin APIs that allows inde-
pendent evolution of the software modules and the underlying
networking hardware, protocols, and devices.

Perhaps closest to our agricultural application of edge com-
puting is Taneja et al.’s SmartHerd management system [85].
Like SmartHerd, Comosum co-opts a microservice approach,
wherein the sensing, compute, storage, and actuation mod-
ules can seamlessly be placed in bandwidth rich as well as
constrained environments. Further in line with SmartHerd,
Comosum easily aggregates data from incompatible sensor
vendors’ private web servers to avoid vendor lock-in. Still, § 5
shows FarmBIOS’s extensibility beyond dairy applications.

8.3 IoT Architecture Abstractions
Sisinni et al. [82] define a reference IoT architecture as a
“higher level of abstraction description that helps identify is-
sues and challenges for different application scenarios". This
definition reflects the three years of exploration that resulted in
the Comosum architecture. Previous architectural approaches
identify sensing or perception [10, 25, 51, 91], physical [56],
interface [91], networking [10,25,51,91], transport [56], mid-
dleware [56], and service or application [10, 25, 51, 56, 91]
layers as essential to an IoT application.

Although the architectures fundamentally serve applica-
tions with different business and technical needs, their essen-
tial layers are modules in the Comosum design. Thus, the
benefit of Comosum is its partition of the physical hardware
from the software that manipulates the networked data. That
is, the software, by acting as a collection of byte-passing
modules, is extensible because it is agnostic to the evolution,
intricacies, protocols, or any other factors of the hardware.

9 Conclusion
In this paper, we present Comosum, a system software ar-
chitecture to support digital agriculture (DA) applications in
research and commercial farms. The architecture comprises
hardware, software, and distributed cloud abstractions to build
extensible, reconfigurable, and fault-tolerant sensor networks
for farms. By supporting diverse DA applications in multiple
clouds, we show that FarmBIOS, a Comosum implementa-
tion, meets these design goals. Eighteen months of Comosum
instance deployments and adaptations reveal new insights
on fault-tolerant sensor networks for DA. We introduce ac-
tive digital twins to streamline fault detection, escalation, and
optional repair from sensors to cloud-based modules. In en-
suring that systems approaches employed in urban research
farms readily map to rural farm realities, a thorough analysis
highlights practical insights, limitations, and trade-offs (see
Appendix) that are unique to DA applications as a starting
point for community discussions of DA’s potential contribu-
tions to networked system design and implementation beyond
the current state-of-the-art.

Acknowledgments

This work was funded in part by a Microsoft Cornell Dig-
ital Agriculture Summer Research Fellowship, a Microsoft
Investigator Fellowship, the US National Science Foundation
(NSF) (Grants #1922551, #2019674, and #1955125), the U.S.
Department of Agriculture (USDA) (Grants #2017-67015-
26772 and #2023-77038-38865). The authors appreciate de-
ployment maintenance and software development efforts from
the Center for Advanced Computing (CAC) at Cornell Uni-
versity (especially Chris Myers and Brandon Barker), Kevin
Huang, Yifan Zhao, and Annie Kimmel. Comosum benefited
from expertise and logistical support from our collaborators
in Animal Science (Julio O. Giordano and Martin M. Pérez),
Plant Pathology (Fernando Emiliano Romero Galván, and
Kaitlin M. Gold), and Plant Science (Savanah Dale, Mike
Gore, Nicholas Kaczmar, Neil Mattson) to realize the Cow-
sOnFibits, WineGuard, and WaterGuard applications, respec-
tively. The networking infrastructure for this project would
not have been possible without the help from numerous In-
formation Technology professionals (especially Scott Yoest,
Dora Abdullah, and Avery Quinn Smith), building managers
(especially Scott Albrecht), orchard managers, and carpenters
at Cornell University. The authors would like to thank Ken
Birman, Kevin Negy, A. F. Cooper, Danny Adams, Cody Sun-
derlin, the anonymous reviewers, and our shepherd, Sándor
Laki, for their constructive feedback and insightful discus-
sions during the manuscript’s preparation and artifact evalua-
tion. Lastly, the authors appreciate the support from Ranveer
Chandra, Elizabeth Bruce, and Tusher Chakraborty at Mi-
crosoft for providing access to cloud credits and guidance in
deploying the FarmBeats platform.

References

[1] 1890FOUNDATION, . Our History - Land Grant and
Universities: A Primer.
https://www.1890foundation.org/history-of-land-grant-
universities.

[2] AFIMILK. AfiAct II: The Leading Cow Leg Sensor.
https://www.afimilk.com/cow-monitoring#afi-collar,
Nov. 2021.

[3] AFIMILK. AfiCollar: Advanced Neck Collar for Cow
Monitoring.
https://www.afimilk.com/cow-monitoring#afi-collar,
Nov. 2021.

[4] AFIMILK. AFILAB. https://www.afimilk.com/afilab/,
Nov. 2021.

[5] AFIMILK. mySilent Herdsman.
https://my.silentherdsman.com/\#/login, Nov. 2021.

[6] AHMAD, N., HUSSAIN, A., ULLAH, I., AND ZAIDI,
B. H. IOT based Wireless Sensor Network for
Precision Agriculture. In 2019 7th
International Electrical Engineering Congress
(iEECON) (2019), pp. 1–4.

[7] AL-SADDIK, H., SIMON, J.-C., AND COINTAULT, F.
Assessment of the optimal spectral bands for designing
a sensor for vineyard disease detection: The case of
‘Flavescence dorée’. Precision Agriculture 20, 2
(2019), 398–422.

[8] ALLIANCE, L. A Technical View of LoRa and
LoRaWAN. LoRa Alliance (2015).

[9] APLU, A. Land-Grant University FAQ.
https://www.aplu.org/about-us/history-of-aplu/what-is-
a-land-grant-university/.

[10] ATZORI, L., IERA, A., AND MORABITO, G. The
Internet of Things: A survey. Computer Networks 54,
15 (2010), 2787–2805.

[11] AYOUB, W., SAMHAT, A. E., NOUVEL, F., MROUE,
M., AND PRÉVOTET, J.-C. Internet of Mobile Things:
Overview of LoRaWAN, DASH7, and NB-IoT in
LPWANs Standards and Supported Mobility. IEEE
Communications Surveys Tutorials 21, 2 (2019),
1561–1581.

[12] BAHL, P., CHANDRA, R., MOSCIBRODA, T., MURTY,
R., AND WELSH, M. White Space Networking with
Wi-Fi like Connectivity. In Proceedings of the
ACM SIGCOMM 2009 Conference on Data
Communication (New York, NY, USA, Aug. 2009),
SIGCOMM ’09, Association for Computing
Machinery, pp. 27–38.

[13] BAUER, J., AND ASCHENBRUCK, N. Design and
Implementation of an Agricultural Monitoring System
for Smart Farming. In 2018 IoT Vertical and
Topical Summit on Agriculture - Tuscany
(IOT Tuscany) (2018), pp. 1–6.

[14] BIRADAR, P. Standard_init_linux.go:211: Exec user
process caused “exec format error”.
https://stackoverflow.com/questions/58298774/standard-
init-linux-go211-exec-user-process-caused-exec-
format-error.

[15] BOUTHILLIER, X., LAURENT, C., AND VINCENT, P.
Unreproducible Research is Reproducible. In
Proceedings of the 36th International Conference on
Machine Learning (June 2019), K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97 of Proceedings of
Machine Learning Research, PMLR, pp. 725–734.

[16] BROADBANDNOW. Expert Overview of
HughesNet’s Services.
https://broadbandnow.com/HughesNet, May 2021.

[17] BURRELL, J. Thinking Relationally about Digital
Inequality in Rural Regions of the US. First Monday
23, 6 (2018).

[18] CASADO, M., KOPONEN, T., SHENKER, S., AND
TOOTOONCHIAN, A. Fabric: A Retrospective on
Evolving SDN. In Proceedings of the First Workshop
on Hot Topics in Software Defined Networks (2012),
pp. 85–90.

[19] CHUN, B.-G., IHM, S., MANIATIS, P., NAIK, M.,
AND PATTI, A. CloneCloud: Elastic Execution
between Mobile Device and Cloud. In Proceedings of
the Sixth Conference on Computer Systems (New
York, NY, USA, 2011), EuroSys ’11, Association for
Computing Machinery, pp. 301–314.

[20] COOPER, A. F., LU, Y., FORDE, J. Z., AND SA, C. D.
Hyperparameter Optimization Is Deceiving Us, and
How to Stop It. In Advances in
Neural Information Processing Systems (2021).

[21] DB, R. T. W. Channel Search.
https://usa.wavedb.com/channelsearch/tvws, May 2021.

[22] DI GENNARO, S. F., BATTISTON, E., DI MARCO, S.,
FACINI, O., MATESE, A., NOCENTINI, M.,
PALLIOTTI, A., AND MUGNAI, L. Unmanned Aerial
Vehicle (UAV)-based remote sensing to monitor
grapevine leaf stripe disease within a vineyard affected
by esca complex. Phytopathologia Mediterranea 55, 2
(2016), 262–275.

[23] DILORENZO, J., ZHANG, R., MENZIES, E., FISHER,
K., AND FOSTER, N. Incremental Forest: A DSL for
Efficiently Managing Filestores. SIGPLAN Not. 51, 10
(Oct. 2016), 252–271.

[24] DOCKER. Docker Personal: Get Started with Docker
for Free. https://www.docker.com/products/personal,
Nov. 2021.

[25] DOMINGO, M. C. An overview of the Internet of
Things for people with disabilities. Journal of Network
and Computer Applications 35, 2 (2012), 584–596.

[26] DONG, W., LI, B., GUAN, G., CHENG, Z., ZHANG,
J., AND GAO, Y. TinyLink: A Holistic System for
Rapid Development of IoT Applications. ACM Trans.
Sen. Netw. 17, 1 (Sept. 2020).

[27] DUARTE, M. E., VIGIL-HAYES, M., ZEGURA, E.,
BELDING, E., MASARA, I., AND NEVAREZ, J. C. As
a Squash Plant Grows: Social Textures of Sparse

Internet Connectivity in Rural and Tribal Communities.
ACM Transactions on Computer-Human Interaction
28, 3 (July 2021), 16:1–16:16.

[28] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE,
J. Exokernel: An operating system architecture for
application-level resource management. In Proceedings
of the Fifteenth ACM Symposium on Operating
Systems Principles (New York, NY, USA, Dec. 1995),
SOSP ’95, Association for Computing Machinery,
pp. 251–266.

[29] FOUNDATION, C. N. C. Production-Grade Container
Orchestration. https://kubernetes.io/, Nov. 2021.

[30] GALLARDO, R., AND WHITACRE, B. A Look at
Broadband Access, Providers and Technology. Tech.
rep., Purdue Center for Regional Development, West
Lafayette, IN, USA, 2019.

[31] GARNETT, P., AND ROBERTS, S. Overview of Internet
service provider technology considerations for rural
broadband deployments. Tech. rep., Microsoft Airband
Initiative Team, Redmond, WA, USA, 2018.

[32] GAZONI, E., AND CLARK, C. Openpyxl - A Python
library to read/write Excel 2010 xlsx/xlsm files, Jan.
2020.

[33] GIORDANO, J., PEREZ, M., RIAL, C., NYDAM, D.,
YOU, Y., WANG, Y., AND WEINBERGER, K.
Improving dairy cow health monitoring and
management using automated sensors. In Conference
of Research Workers in Animal Diseases. Abs (2021),
vol. 447, p. 346.

[34] GOKUL, V., AND TADEPALLI, S. Implementation of
smart infrastructure and non-invasive wearable for real
time tracking and early identification of diseases in
cattle farming using IoT. In 2017
International Conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud) (I-SMAC) (2017),
pp. 469–476.

[35] GOOGLE. Protocol Buffers, Feb. 2010.

[36] GOWEY, K. Airborne Visible / Infraraded Imaging
Spectromer (AVIRIS NG) DATA.
https://avirisng.jpl.nasa.gov/data.html, Nov. 2020.

[37] GRGIĆ, K., ŽAGAR, D., BALEN, J., AND VLAOVIĆ, J.
Internet of Things in Smart Agriculture — Possibilities
and Challenges. In 2020 International Conference on
Smart Systems and Technologies (SST) (2020),
pp. 239–244.

[38] GUAN, G., FU, K., CHENG, Z., GAO, Y., AND DONG,
W. Rapid development of IoT applications with

TinyLink. In 2017 IEEE Conference on
Computer Communications Workshops
(INFOCOM WKSHPS) (May 2017), pp. 956–957.

[39] GUAN, G., LI, B., GAO, Y., ZHANG, Y., BU, J., AND
DONG, W. TinyLink 2.0: Integrating Device, Cloud,
and Client Development for IoT Applications. In
Proceedings of the 26th
Annual International Conference on
Mobile Computing and Networking (New York, NY,
USA, 2020), MobiCom ’20, Association for Computing
Machinery.

[40] GUTIÉRREZ, J., VILLA-MEDINA, J. F.,
NIETO-GARIBAY, A., AND PORTA-GÁNDARA, M. Á.
Automated Irrigation System Using a Wireless Sensor
Network and GPRS Module. IEEE Transactions on
Instrumentation and Measurement 63, 1 (Jan. 2014),
166–176.

[41] HARDY, J., WYCHE, S., AND VEINOT, T. Rural HCI
Research: Definitions, Distinctions, Methods, and
Opportunities. Proc. ACM Hum.-Comput. Interact. 3,
CSCW (Nov. 2019).

[42] HASAN, S., BARELA, M. C., JOHNSON, M.,
BREWER, E., AND HEIMERL, K. Scaling Community
Cellular Networks with CommunityCellularManager.
In 16th ${$USENIX$}$ Symposium on
Networked Systems Design and Implementation
(NSDI 19) (2019), pp. 735–750.

[43] HEISER, G., UHLIG, V., AND LEVASSEUR, J. Are
virtual-machine monitors microkernels done right?
ACM SIGOPS Operating Systems Review 40, 1 (Jan.
2006), 95–99.

[44] HIGGINS, V., BRYANT, M., HOWELL, A., AND
BATTERSBY, J. Ordering Adoption: Materiality,
Knowledge and Farmer Engagement with Precision
Agriculture Technologies. Journal of Rural Studies 55
(Oct. 2017), 193–202.

[45] HRUŠKA, J., ADÃO, T., PÁDUA, L., MARQUES, P.,
PERES, E., SOUSA, A., MORAIS, R., AND SOUSA,
J. J. Deep Learning-Based Methodological Approach
for Vineyard Early Disease Detection Using
Hyperspectral Data. In IGARSS 2018 - 2018
IEEE International Geoscience and
Remote Sensing Symposium (2018), pp. 9063–9066.

[46] IMTIAZ JAYA, N., AND HOSSAIN, M. F. A Prototype
Air Flow Control System for Home Automation Using
MQTT Over Websocket in AWS IoT Core. In 2018
International Conference on
Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC) (Oct. 2018),
pp. 111–1116.

[47] INC, O. Weather API. https://openweathermap.org/api,
May 2021.

[48] INC, T. Programmable SMS.
https://www.twilio.com/docs/sms/quickstart/python,
May 2021.

[49] JAIN, P., LIU, W., ZHU, S., MELKONIAN, J., PAULI,
D., RIHA, S. J., GORE, M. A., AND STROOCK, A. D.
A minimally disruptive method for measuring water
potential in-planta using hydrogel nanoreporters.
bioRxiv (2020).

[50] JAWAD, H. M., NORDIN, R., GHARGHAN, S. K.,
JAWAD, A. M., AND ISMAIL, M. Energy-Efficient
Wireless Sensor Networks for Precision Agriculture: A
Review. Sensors 17, 8 (2017).

[51] JIA, X., FENG, Q., FAN, T., AND LEI, Q. RFID
technology and its applications in Internet of Things
(IoT). In 2012 2nd International Conference on
Consumer Electronics, Communications and
Networks (CECNet) (Apr. 2012), pp. 1282–1285.

[52] JIMÉNEZ-BRENES, F. M., LÓPEZ-GRANADOS, F.,
TORRES-SÁNCHEZ, J., PEÑA, J. M., RAMÍREZ, P.,
CASTILLEJO-GONZÁLEZ, I. L., AND DE CASTRO,
A. I. Automatic UAV-based detection of Cynodon
dactylon for site-specific vineyard management. PloS
one 14, 6 (2019), e0218132.

[53] KERKECH, M., HAFIANE, A., AND CANALS, R. Vine
disease detection in UAV multispectral images using
optimized image registration and deep learning
segmentation approach. Computers and Electronics in
Agriculture 174 (2020), 105446.

[54] KIM, H., MIN, Y., AND CHOI, B. Real-time
temperature monitoring for the early detection of
mastitis in dairy cattle: Methods and case researches.
Computers and Electronics in Agriculture 162 (2019),
119–125.

[55] LI, B., AND DONG, W. EdgeProg: Edge-centric
Programming for IoT Applications. In 2020 IEEE 40th
International Conference on
Distributed Computing Systems (ICDCS) (Nov. 2020),
pp. 212–222.

[56] LIU, C. H., YANG, B., AND LIU, T. Efficient naming,
addressing and profile services in Internet-of-Things
sensory environments. Ad Hoc Networks 18 (2014),
85–101.

[57] LOWENBERG-DEBOER, J. The Precision Agriculture
Revolution. Foreign Aff. 94 (2015), 105.

[58] M, A., AND S, I. Effects of Precision Irrigation on
Productivity and Water Use Efficiency of Alfafa under
Different Irrigation Methods in Arid Climates. Journal
of Applied Sciences Research 7, 3 (2011), 299–308.

[59] M. PEREZ, M., YU, Y., WANG, Y., WEINBERGER,
K. Q., NYDAM, D., AND O. GIORDANO, J.
Performance of the machine learning method XG-
Boost for prediction of clinical health disorders in
lactating dairy cows. Journal of Dairy Science 103, 1
(June 2020), 127–127.

[60] MELL, P., AND GRANCE, T. The NIST Definition of
Cloud Computing. Tech. rep., National Institute of
Standards and Technology, Gaithersburg, MD, USA,
2011.

[61] MICROSOFT. Observer Design Pattern.
https://docs.microsoft.com/en-
us/dotnet/standard/events/observer-design-pattern.

[62] MICROSOFT. Get started with Azure Table storage and
the Azure Cosmos DB Table API using Python.
https://docs.microsoft.com/en-us/azure/cosmos-
db/table-storage-how-to-use-python, May 2021.

[63] MICROSOFT. Quickstart: Build a Python application
using an Azure Cosmos DB SQL API account.
https://docs.microsoft.com/en-us/azure/cosmos-
db/create-sql-api-python, May 2021.

[64] MICROSOFT. What is an Azure Machine Learning
workspace. https://docs.microsoft.com/en-
us/azure/machine-learning/concept-workspace, May
2021.

[65] MUELLER, N. D., GERBER, J. S., JOHNSTON, M.,
RAY, D. K., RAMANKUTTY, N., AND FOLEY, J. A.
Closing yield gaps through nutrient and water
management. Nature 490, 7419 (2012), 254–257.

[66] NASA. Enabling Earth Science in the Cloud.
https://earthdata.nasa.gov/esds/cloud, Jan. 2021.

[67] NCSTATE, E. Chlorophytum comosum (Anthericum
Comosum, Chlorophytum, Ribbon Plant, Spider Ivy,
Spiderplant, Spider Plant, Walking Anthericum) | North
Carolina Extension Gardener Plant Toolbox.
https://plants.ces.ncsu.edu/plants/chlorophytum-
comosum/.

[68] NGUYEN, C., SAGAN, V., MAIMAITIYIMING, M.,
MAIMAITIJIANG, M., BHADRA, S., AND
KWASNIEWSKI, M. T. Early Detection of Plant Viral
Disease Using Hyperspectral Imaging and Deep
Learning. Sensors 21, 3 (2021), 742.

[69] NOTES, E. RS485 - an introduction.
https://www.electronics-
notes.com/articles/connectivity/serial-data-
communications/rs485-introduction-basics.php.

[70] ORGANIZATION, A. Apache Cassandra | Apache
Cassandra Documentation.
https://cassandra.apache.org/_/index.html.

[71] PAGAY, V., M, S., A, S. D., J, H. E., O, V., A, P., N,
C. T., N, L. A., AND D, S. A. A microtensionmeter
capable of measuring water potentials below -10 MPa.
Lab Chip 14, 15 (2014), 2806–2817.

[72] PEREZ, M., CABRERA, E., AND GIORDANO, J. Effect
of automating health monitoring on detection of health
disorders and performance of lactating dairy cows.
Journal of Dairy Science 102 (2019), 24.

[73] RITCHIE, D. M., AND THOMPSON, K. The UNIX
Time-Sharing System. Commun. ACM 17, 7 (July
1974), 365–375.

[74] RIZZATO, F. Mobile Experience in Rural USA- An
Operator Comparison.
https://www.opensignal.com/2019/09/24/mobile-
experience-in-rural-usa-an-operator-comparison, Sept.
2019.

[75] RUBAMBIZA, G., SENGERS, P., AND
WEATHERSPOON, H. Seamless visions, seamful
realities: Anticipating rural infrastructural fragility in
early design of digital agriculture. In Proceedings of
the 2022 CHI Conference on Human Factors in
Computing Systems (2022), pp. 1–15.

[76] SANDBERG, R., GOLDBERG, D., KLEIMAN, S.,
WALSH, D., AND LYON, B. Design and
Implementation of the Sun Network Filesystem. In
Proceedings of the Summer USENIX Conference
(1985), pp. 119–130.

[77] SERVICES, A. W. Amazon SageMaker.
https://aws.amazon.com/sagemaker/, Nov. 2021.

[78] SERVICES, A. W. AWS IoT Greengrass: Build
intelligent IoT devices faster.
https://aws.amazon.com/greengrass/, Nov. 2021.

[79] SHEPHERD, M., TURNER, J. A., SMALL, B., AND
WHEELER, D. Priorities for science to overcome
hurdles thwarting the full promise of the ‘digital
agriculture’ revolution. Journal of the Science of Food
and Agriculture 100, 14 (2020), 5083–5092.

[80] SIMSHINE. Simshine Simam Alloy AS: Smart
deterrence in the act.
https://www.simcam.ai/simcam-alloy-1s, Nov. 2021.

[81] SINHA, K., PINEAU, J., FORDE, J., KE, R. N., AND
LAROCHELLE, H. NeurIPS 2019 Reproducibility
Challenge. ReScience 6, 2 (2020).

[82] SISINNI, E., SAIFULLAH, A., HAN, S., JENNEHAG,
U., AND GIDLUND, M. Industrial Internet of Things:
Challenges, Opportunities, and Directions. IEEE
Transactions on Industrial Informatics 14, 11 (Nov.
2018), 4724–4734.

[83] SMAXTEC. BE SUCCESSFUL! WITH HEALTHY
DAIRY COWS. https://smaxtec.com/en/.

[84] SUPPLY, G. T. Onset HOBO S-TMB-M006
Temperature Smart Sensor with 19.7’ cable.
https://www.globaltestsupply.com/product/onset-hobo-
s-tmb-m006-temperature-smart-sensor, Nov. 2021.

[85] TANEJA, M., JALODIA, N., BYABAZAIRE, J., DAVY,
A., AND OLARIU, C. SmartHerd management: A
microservices-based fog computing–assisted IoT
platform towards data-driven smart dairy farming.
Software: Practice and Experience 49, 7 (2019),
1055–1078.

[86] VAN LEEUWEN, C., TRÉGOAT, O., CHONÉ, X., BOIS,
B., PERNET, D., AND GAUDILLÈREJEAN-PIERRE.
Vine water status is a key factor in grape ripening and
vintage quality for red Bordeaux wine. How can it be
assessed for vineyard management purposes? OENO
One 43, 3 (Sept. 2009), 121–134.

[87] VAS. DairyComp: The World’s Most Powerful Dairy
Herd Management Tool. https://vas.com/dairycomp/,
Nov. 2021.

[88] VASISHT, D., KAPETANOVIC, Z., WON, J., JIN, X.,
CHANDRA, R., SINHA, S., KAPOOR, A.,
SUDARSHAN, M., AND STRATMAN, S. FarmBeats:
An IoT Platform for Data-Driven Agriculture. In 14th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17) (Boston, MA, Mar.
2017), USENIX Association, pp. 515–529.

[89] WELSH, M., CULLER, D., AND BREWER, E. SEDA:
An Architecture for Well-Conditioned, Scalable
Internet Services. In Proceedings of the
Eighteenth ACM Symposium on
Operating Systems Principles (New York, NY, USA,
2001), SOSP ’01, Association for Computing
Machinery, pp. 230–243.

[90] WOOD, M. D., AND MARZULLO, K. The design and
implementation of meta. Reliable distributed
computing with the ISIS toolkit (1993), 309–327.

[91] XU, L. D., HE, W., AND LI, S. Internet of Things in
Industries: A Survey. IEEE Transactions on Industrial
Informatics 10, 4 (Nov. 2014), 2233–2243.

[92] YOUNG, M., TEVANIAN, A., RASHID, R., GOLUB,
D., AND EPPINGER, J. The Duality of Memory and
Communication in the Implementation of a
Multiprocessor Operating System. SIGOPS Oper. Syst.
Rev. 21, 5 (Nov. 1987), 63–76.

[93] ZARCO-TEJADA, P., POBLETE, T., CAMINO, C.,
GONZALEZ-DUGO, V., CALDERON, R., HORNERO,
A., HERNANDEZ-CLEMENTE, R., ROMÁN-ÉCIJA,
M., VELASCO-AMO, M., LANDA, B., ET AL.
Divergent abiotic spectral pathways unravel pathogen
stress signals across species. Nature Communications
12, 1 (2021), 1–11.

A Artifact Appendix

Abstract
The artifact documents our deployment experience and
open-source efforts to build a Software-Defined Farm (or
SDF) [75], also known as the Comosum or FarmBIOS
system in the present paper. Comosum is intended to provide
an extensible, reconfigurable, and fault-tolerant platform for
IoT data collection, processing, and actuation. On one hand,
the paper covers the architecture (Comosum), the
implementation (FarmBIOS), and our deployment
experiences over 18 months. On the other hand, the artifact
provides a standalone Docker image and a pointer to the
open-source code that, together, can be used to demonstrate
the instantiation of the telemetry, analytics, and actuation
concepts. In particular, the artifact demonstrates the
repeatability of these ideas through three applications:
CowsOnFitbits, WineGuard, and WaterGuard.

Scope
In addition to inspecting the code and research datasets, the
artifact can be used as a starting point for extending the
FarmBIOS/Comosum platform with new cloud services and
sensor vendors. The current release of the artifact is intended
to validate the listed claims about the applications:

• The CowsOnFitbits application (§§ 5.1) can use the
Comosum sensor module (aka telemetry module) and
compute modules to aggregate data from three
(anonymous) IoT vendors and six data sources.

• The WineGuard application (§§ 5.2) can use can use the
Comosum compute module abstraction to train machine
learning models and perform local inference with at
least 75% accuracy in approximately 30 seconds.

• The WaterGuard application (§§ 5.3) demonstrates the
potential of active digital twins in increasing the
platform’s fault-tolerance to failures in the path from the
sensors to the cloud.

Contents

The artifact includes a Docker image named
comosum-atc-artifact-eval and a zipped archive of the code
base built from the usenix-atc23-artifact-eval branch and the
b313d7e commit in the SDF GitHub repository.

Hosting

The artifact is hosted on the publicly-funded archival
platform Zenodo under this unique DOI.

Requirements

• The Docker image was primarily built and tested on an
X86-based system (Windows 10 Education OS, Version
22H2, OS Build 19045.2846 with WSL 2 installed to
emulate a Linux-like environment, and Docker Desktop
Version 20.10.10). Therefore, the image should be
loadable on most Unix-like environments with Docker
installed.

• In addition to the primary development environment
listed above, we reproduced the results on a X86-based
system (Ubuntu Linux OS 22.04.1, Docker Version
23.0.6) and an arm64-based Macbook Pro (macOS
Ventura 13.3, Docker Version 23.0.5)

• Although we have successfully reproduced the results
on a Mac with an Apple Silicon (M2) chip, we cannot
guarantee reproducibility if the evaluation is conducted
on macOS, especially the M chips which are known to
have issues with Docker Desktop filesystem change
notifications and port mapping/forward issues. The
Comosum system extensively relies on change
notifications and port forwarding.

B Understanding the Trade-offs
This section presents an exploration of network
configurations for Comosum applications with two goals in
mind. First, we showcase Comosum’s potential
reconfigurability from a 55-acre urban farm to a 615-acre
rural farm. Secondly, we offer a way for interdisciplinary DA
researchers to quickly establish their networking needs by
assessing three factors: expected application payload
frequencies (§§ B.1), network availability and throughput in
urban versus rural locations (§§ B.2), and desired system
latency (§§ B.3). The key observation is that the DA context
has the potential for new lessons and challenges to
well-established networking, storage, and application
management assumptions. The Comosum experiences serve
a crucial starting point for the community conversation.

https://github.com/Cornell-CIDA-Dev/Software-Defined-Farm/commit/b313d7e7a9a308fe374867c747c1237766cf3448
https://zenodo.org/badge/latestdoi/580583199
https://docs.docker.com/desktop/troubleshoot/known-issues/
https://docs.docker.com/desktop/troubleshoot/known-issues/
https://github.com/docker/for-mac/issues/3350

Application Payload Frequency LoRa (SF:12) DSL Satellite 4G LTE TVWS (1x6) TVWS (4x6) Fiber-optic
WaterGuard 65B 6 min 0.44 sec 5.20e-4 sec 1.73e-4 sec 9.60e-5 sec 5.20e-5 sec 2.80e-6 sec 5.20e-7 sec
WineGuard 4MB Daily 7.60 hr 32.00 sec 10.67 sec 5.93 sec 3.20 sec 0.17 sec 0.03 sec

CowsOnFitbits 17MB Daily 1.39 days 2.30 min 45.87 sec 25.48 sec 13.76 sec 0.74 sec 0.14 sec

Table 4: Estimated cloud backup time for FarmBIOS applications under various network bottleneck scenarios.

B.1 Application Data Rates
Table 5 illustrates the significant range of data generation
rates for the three Comosum applications; from a few bytes
every six minutes to hundreds of MBs weekly. The
WaterGuard total is based on a sensor hub deployment with
seven sensors (see §§ 5.3). The WineGuard dataset is based
on spectrometer values from a 500m*300m vineyard field.
The CowsOnFitbits total is an estimation based on data from
four sensor providers tracking approximately 1,500 cows on
a commercial farm. The CowsOnFitbits sensor data
generation varies from every 10 minutes to once daily.

Application Payload Frequency
WaterGuard 65B 6 minutes
WineGuard 4MB Daily
CowsOnFitbits 17MB Varies

Table 5: FarmBIOS application data rates and formats.

B.2 Achievable Network Throughputs
We consider five networking media for data transfers at a
farm, namely LoRa, DSL, Satellite, 4G LTE, and TVWS.
Table 6 shows the achievable data transfer rates for the
different media. The LoRa settings reflect current settings
from the WaterGuard sensor hubs.
The DSL throughput is included because DSL holds the
largest footprint in rural housing units’ Internet access [30].
The TVWS settings reflect observed throughputs in the
literature [31], measured TV channel occupations (as of Sept.
2020) at a campus research farm and a more rural farm 25
miles away, and tower height-based channel availability
estimations [21] for the two farms. Based on their GPS
coordinates, the campus farm offers only separate, single
channels while the more remote farm offers four contiguous
channels.

Medium Throughput Internet? Deployed?
LoRa (SF:12) 1.17 kbps No Yes
DSL 1 Mbps [30] Yes No
Satellite 3 Mbps [16] Yes No
4G LTE 5.4 Mbps [74] Yes Yes
TVWS (1x6MHz) 10 Mbps [31] No Yes
TVWS (4x6MHz) 186 Mbps [31] No No
Fiber-optic 1Gbps Yes Yes

Table 6: Rural uplink throughputs. SF = Spreading Factor.

B.3 Cloud Backup Bottleneck Analysis
The Comosum distributed cloud affords elastic compute and
storage power. Practically, we transfer data not only to

leverage more abundant compute resources for
compute-intensive tasks in the cloud, but also to store the
datasets for future retrospective analysis. Assuming each
networking media (whether routing in the field or at the
gateway) as an unreliable bottleneck in the data transfer, we
compare the networking media/latency trade-offs in
uploading each application’s data.
Table 4 illustrates the expected latencies of different media
for a given application. For instance, while a fiber-optic link
in an urban farm would transmit CowsOnFitbits’ 17MB of
data in less than a second, the most popular Internet service
in rural locations (DSL) would require three minutes. In
another instance, while a research farm with one TVWS
channel would route the data within 14 seconds at the edge,
the four channels in the rural farm would transmit the same
dataset in sub-second time.
In sum, by comparing urban and rural settings, this analysis
shows the nuanced networking and storage strategies for DA
applications in a distributed cloud setting. This motivates
future research avenues in Comosum application migrations
either as the network fails or edge resources deplete.

	Introduction
	blackChallenges: Why DA is Hard
	blackChallenge 1: Data Aggregation
	blackChallenge 2: Data Analytics
	blackChallenge 3: Fault Detection/Tolerance
	Summary and Design Goals

	Comosum Architecture
	Overview
	Comosum Modules
	The Comosum Distributed Cloud
	The Comosum Control Plane

	FarmBIOS: A Comosum Implementation
	FarmBIOS Control Plane
	FarmBIOS Library
	FarmBIOS RPC Protocol
	FarmBIOS Message Format

	Applications & Deployment Experiences
	CowsOnFitbits
	WineGuard
	WaterGuard

	Adapting to the Wild
	Offline Data Collection Is Not Enough
	The Fix: Active Digital Twins

	Practical Insights and Limitations
	Related work
	Programming Frameworks
	Agricultural Sensor Networks
	IoT Architecture Abstractions

	Conclusion
	Artifact Appendix
	Understanding the Trade-offs
	Application Data Rates
	Achievable Network Throughputs
	Cloud Backup Bottleneck Analysis

