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Motivation

● Edge Computing
○ Supports manufacturing, smart homes, supply chains, etc
○ Reduces latency and bandwidth consumption
○ Novel applications such as AI inference at the edge



Edge Computing Challenges

● How do we manage application life-cycle at scale?
● Can we do so with limited cloud connectivity?
● How do we sustain operation when connectivity is lost?
● How do we gracefully recover from endpoint failures?
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Research Question: how do we efficiently 
manage the application lifecycle on 
hundreds of thousands of endpoints?
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Edge Workload Management in 

Resource-Constrained Environments

• Scaling Community Networks (CNs) with Community Cellular Manager. Hasan 
et al. NSDI. 2019.

• Energy-efficient Computing for Wildlife Tracking: Design Tradeoffs and Early 
Experiences with ZebraNet. Juang et al. ASPLOS. 2002.

• Visage: Enabling Timely Analytics for Drone Imagery. Jha et al. MobiCom. 
2021.

• The Akamai Network: A Platform for High-Performance Internet Applications. 
Nygren et al. UMass Amherst. 2010.

• Experience in Implementing a Non-IP Routing Protocol VIRO in GENI. Dumba 
et al. 2014.
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• Application life-cycle management at scale
• Bootstrapping IoT runtimes 󰗥
• Layered deployments 󰗥
• Min. bandwidth consumption ❌

• Limited connectivity
• Communication modalities 󰗥
• Peer-to-peer communication ❌

• Disconnected operation
• Offline cache of messages 󰗥

• Failure recovery
• Caching workloads ❌
• Avoid single point of failure ❌

Industrial IoT Management Platforms
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Experience in Implementing a Non-IP Routing Protocol VIRO in GENI, Dumba et al., IEEE ICNP, 2014

Proposed Solution – Key Idea
Scaling Edge Deployments using Rendezvous Nodes 

     VIRO: A Scalable, Robust and Namespace Independent Virtual Id ROuting for Future Networks, Jain et al., IEEE INFOCOMM, 2011
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• Priority list of RDV nodes 󰗥
• Minimal edge hub overhead 󰗥

EdgeRDV Benefits: Scalability



EdgeRDV Benefits: Multi-level Failure Resilience

• Multi-level caching 󰗥
• Multiple RDV nodes 󰗥
• Ranked list of backup RDVs 󰗥



Challenge with RDV nodes - How many and where?
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Simulation Results
Keeping the network balanced
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•Setup
• Docker Linux container (Ubuntu 20.04)

• RDV node coverage: 10%

• Run components as processes on the same host

• Scalability analysis up to 667K endpoints
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•Setup
• Docker Linux container (Ubuntu 20.04)
• RDV node coverage: 10%
• Run components as processes on the same host
• Scalability analysis up to 667K endpoints

•Metrics
• Intermediate nodes
• Total physical edges
• Control/data messages

Experiments



Analysis: Minimizing Intermediate Nodes

Minimizing intermediate nodes

• Experiment:
• To estimate the number of intermediate 

nodes required to get messages to the 
hub

• Observation(s):
• RDV method has 10-1000x fewer 

intermediate nodes depending on 
targeted coverage

• RDV selection algorithm is sensitive to 
coverage and costs



Analysis: Detecting and Adapting to Failures
Time to acquiesce/adapt to failures

• Experiment:
• To understand the number of messages 

required to update all endpoints of single 
point of failure (i.e., the hub)

• Observation(s):
• RDV failure messages scale gracefully 

with number of endpoints



Model download in failure recovery

• Experiment:
• To understand the number of 

control/data messages required to pull a 
new update during failure recovery

• Observation(s):
• RDV method scales constantly with 

number of endpoints

Analysis: Recovering from Failures



Next Steps

● Hardware implementation
○ Scalability
○ Bandwidth consumption
○ Data transfer
○ RTT optimization

● Novel applications
○ Digital agriculture
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Conclusion

● 1-3 orders of magnitude fewer intermediate nodes
● Scalable infrastructure bootstrapping
● Adjustable network resilience
● Efficient resource usage



Thank You

Gloire Rubambiza
gloire@cs.cornell.edu

https://rubambiza.github.io
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