
EdgeRDV: A Framework for Edge

Workload Management at Scale

Gloire Rubambiza (gloire@cs.cornell.edu)

IEEE Edge - 07/04/2023 - Chicago, IL

Co-authors: Braulio Dumba (IBM Research), Andrew J. Anderson (IBM Research),

Hakim Weatherspoon (Cornell University)

Motivation

State-of-the-art

Methodology

Analysis/Evaluation

Motivation

● Edge Computing
○ Supports manufacturing, smart homes, supply chains, etc
○ Reduces latency and bandwidth consumption
○ Novel applications such as AI inference at the edge

Edge Computing Challenges

● How do we manage application life-cycle at scale?
● Can we do so with limited cloud connectivity?
● How do we sustain operation when connectivity is lost?
● How do we gracefully recover from endpoint failures?

Edge Computing Challenges

● How do we manage application life-cycle at scale?
● Can we do so with limited cloud connectivity?
● How do we sustain operation when connectivity is lost?
● How do we gracefully recover from endpoint failures?

Research Question: how do we efficiently
manage the application lifecycle on
hundreds of thousands of endpoints?

Motivation

State-of-the-art

Methodology

Analysis/Evaluation

Edge Workload Management in

Resource-Constrained Environments

• Scaling Community Networks (CNs) with Community Cellular Manager. Hasan
et al. NSDI. 2019.

• Energy-efficient Computing for Wildlife Tracking: Design Tradeoffs and Early
Experiences with ZebraNet. Juang et al. ASPLOS. 2002.

• Visage: Enabling Timely Analytics for Drone Imagery. Jha et al. MobiCom.
2021.

• The Akamai Network: A Platform for High-Performance Internet Applications.
Nygren et al. UMass Amherst. 2010.

• Experience in Implementing a Non-IP Routing Protocol VIRO in GENI. Dumba
et al. 2014.

•Use cases

• Manufacturing

• Electric

• Automation

•Use cases

• Transportation

• Utilities

• Healthcare

•Use cases

• Manufacturing

• Smart homes

• Supply chain

Azure IoT Edge Google IoT Core AWS IoT Core

Industrial IoT Management Platforms

Industrial IoT Management Platforms

Industrial IoT Management Platforms

Industrial IoT Management Platforms

• Application life-cycle management at scale

• Limited connectivity

• Disconnected operation

• Failure recovery

Industrial IoT Management Platforms

• Application life-cycle management at scale
• Bootstrapping IoT runtimes 󰗥
• Layered deployments 󰗥

• Limited connectivity
• Communication modalities 󰗥

• Disconnected operation
• Offline cache of messages 󰗥

• Failure recovery

Industrial IoT Management Platforms

• Application life-cycle management at scale
• Bootstrapping IoT runtimes 󰗥
• Layered deployments 󰗥
• Min. bandwidth consumption ❌

• Limited connectivity
• Communication modalities 󰗥
• Peer-to-peer communication ❌

• Disconnected operation
• Offline cache of messages 󰗥

• Failure recovery
• Caching workloads ❌
• Avoid single point of failure ❌

Industrial IoT Management Platforms

Motivation

State-of-the-art

Methodology

Analysis/Evaluation

Experience in Implementing a Non-IP Routing Protocol VIRO in GENI, Dumba et al., IEEE ICNP, 2014

Proposed Solution – Key Idea
Scaling Edge Deployments using Rendezvous Nodes

 VIRO: A Scalable, Robust and Namespace Independent Virtual Id ROuting for Future Networks, Jain et al., IEEE INFOCOMM, 2011

EdgeRDV Benefits: Scalability

EdgeRDV Benefits: Scalability

EdgeRDV Benefits: Scalability

EdgeRDV Benefits: Scalability

EdgeRDV Benefits: Scalability

EdgeRDV Benefits: Scalability

EdgeRDV Benefits: Scalability

EdgeRDV Benefits: Scalability

• Priority list of RDV nodes 󰗥
• Minimal edge hub overhead 󰗥

EdgeRDV Benefits: Scalability

EdgeRDV Benefits: Multi-level Failure Resilience

• Multi-level caching 󰗥
• Multiple RDV nodes 󰗥
• Ranked list of backup RDVs 󰗥

Challenge with RDV nodes - How many and where?

Challenge with RDV nodes - How many and where?

Simulation Results
Keeping the network balanced

Minimalist

Simulation Results
Keeping the network balanced

Minimalist Optimistic

EdgeRDV at Scale

EdgeRDV at Scale

Motivation

State-of-the-art

Methodology

Analysis/Evaluation

•Setup
• Docker Linux container (Ubuntu 20.04)

• RDV node coverage: 10%

• Run components as processes on the same host

• Scalability analysis up to 667K endpoints

Experiments

•Setup
• Docker Linux container (Ubuntu 20.04)

• RDV node coverage: 10%

• Run components as processes on the same host

• Scalability analysis up to 667K endpoints

•Metrics
• Intermediate nodes

Experiments

•Setup
• Docker Linux container (Ubuntu 20.04)

• RDV node coverage: 10%

• Run components as processes on the same host

• Scalability analysis up to 667K endpoints

•Metrics
• Intermediate nodes

• Total physical edges

Experiments

•Setup
• Docker Linux container (Ubuntu 20.04)
• RDV node coverage: 10%
• Run components as processes on the same host
• Scalability analysis up to 667K endpoints

•Metrics
• Intermediate nodes
• Total physical edges
• Control/data messages

Experiments

Analysis: Minimizing Intermediate Nodes

Minimizing intermediate nodes

• Experiment:
• To estimate the number of intermediate

nodes required to get messages to the
hub

• Observation(s):
• RDV method has 10-1000x fewer

intermediate nodes depending on
targeted coverage

• RDV selection algorithm is sensitive to
coverage and costs

Analysis: Detecting and Adapting to Failures
Time to acquiesce/adapt to failures

• Experiment:
• To understand the number of messages

required to update all endpoints of single
point of failure (i.e., the hub)

• Observation(s):
• RDV failure messages scale gracefully

with number of endpoints

Model download in failure recovery

• Experiment:
• To understand the number of

control/data messages required to pull a
new update during failure recovery

• Observation(s):
• RDV method scales constantly with

number of endpoints

Analysis: Recovering from Failures

Next Steps

● Hardware implementation
○ Scalability
○ Bandwidth consumption
○ Data transfer
○ RTT optimization

● Novel applications
○ Digital agriculture

Conclusion

Conclusion

Conclusion

● 1-3 orders of magnitude fewer intermediate nodes
● Scalable infrastructure bootstrapping
● Adjustable network resilience
● Efficient resource usage

Thank You

Gloire Rubambiza
gloire@cs.cornell.edu

https://rubambiza.github.io

mailto:gloire@cs.cornell.edu
https://rubambiza.github.io

